Simulated Physiological Oocyte Maturation (SPOM) and Related IVM Systems

Robert Gilchrist

University of New South Wales Sydney, Australia
In Vitro Maturation (IVM)
(No or minimal ovarian stimulation)

24 to 40 hours in vitro

Conventional IVF
Ovarian hyperstimulation (FSH)

In Vitro Maturation (IVM)
(No or minimal ovarian stimulation)

Small antral
Preovulatory

IVF or ICSI

Live Birth Rate/OPU

Thompson JG & Gilchrist RB (2013) In: Biology and Pathology of the Oocyte (Cambridge University Press)

The standard definition of IVM

- Oocytes are matured *in vitro*
 - from the GV-stage (intact cumulus-oocyte complexes)
 - patient FSH-priming is compatible

Edwards RG (1962) *Nature*
Edwards RG (1965) *Nature*
Bringing IVM to the ART clinic: core biological challenges

1) Oocytes from small antral follicles are not fully developmentally competent

2) Maturation in vitro can occur spontaneously without appropriate somatic/maternal control

In Vitro Maturation (IVM)
(No or minimal ovarian stimulation)

Small antral

24 to 40 hours in vitro

IVF or ICSI
COCs in small antral follicles are still developing (oocyte capacitation)
Oocytes acquire developmental competence from coordinated endocrine and paracrine signals.

Small Antral Follicle (EGF-p unresponsive)

- BMP15/GDF9

- EGFR signalling

- Developmental competence

Large Antral Follicle (EGF-p responsive)

- BMP15/GDF9

- EGFR signalling

- Energy

- Metabolite supply

- Developmental competence

Bringing IVM to the ART clinic: core biological challenges

1) Oocytes from small antral follicles are not fully developmentally competent

2) Maturation in vitro can occur spontaneously without appropriate somatic/maternal control

In Vitro Maturation (IVM)
(No or minimal ovarian stimulation)
Oocyte in vitro maturation (IVM)

Standard Spontaneous IVM

- FSH-priming
- complex medium, protein, FSH, EGFp
- LH, E2, cysteamine

IVF/ICSI
Basic Principals: oocyte “capacitation” in vitro - Extended culture of meiotically competent COC

- Isolation from follicle
- Prolonged gap-junction communication

Meiotic inhibitors
- cAMP analogues, PDEi
- cGMP, CNP

Nutrients & metabolic regulators
- Metabolites, IGFs, etc.

CC regulators
- FSH, EGFp, E2, GDF9, BMP15, cumulin
Oocyte maturation: meiotic arrest

Gilchrist RB et al. (2016) Reprod. 152:143-157
Oocyte maturation: meiotic resumption

cAMP: in vivo and in various IVM systems

- Induced IVM (high cAMP, eg SPOM)
- Biphasic IVM
- Induced IVM (moderate cAMP)
- Standard IVM

Gilchrist RB et al. (2016) Reprod. 152:143-157
<table>
<thead>
<tr>
<th>IVM system</th>
<th>cAMP modulator</th>
<th>Species</th>
<th>Effect on oocyte developmental competence*</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biphasic IVM (moderate cAMP)</td>
<td>Org 9935</td>
<td>Human</td>
<td>None</td>
<td>Nogueira et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Murine</td>
<td>Improved</td>
<td>Nogueira et al. (2003b)</td>
</tr>
<tr>
<td></td>
<td>Cilostamide</td>
<td>Human</td>
<td>None</td>
<td>Vanhoutte et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human</td>
<td>Improved</td>
<td>Vanhoutte et al. (2009a,b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine</td>
<td>Improved</td>
<td>Luciano et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>IBMX</td>
<td>Porcine</td>
<td>Improved</td>
<td>Dieci et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lodde et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>CNP</td>
<td>Porcine</td>
<td>Improved</td>
<td>Kawashima et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Franciosi et al. (2014)</td>
</tr>
<tr>
<td>Induced IVM (moderate cAMP)</td>
<td>Milrinone</td>
<td>Bovine</td>
<td>Improved</td>
<td>Thomas et al. (2004b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcine</td>
<td>None</td>
<td>Gruppen et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Rolipram</td>
<td>Bovine</td>
<td>Improved</td>
<td>Thomas et al. (2004b)</td>
</tr>
<tr>
<td></td>
<td>Dipyridamole</td>
<td>Bovine</td>
<td>Decreased</td>
<td>Sasseville et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Hydropoxanthine</td>
<td>Murine</td>
<td>None</td>
<td>Downs et al. (1986)</td>
</tr>
<tr>
<td>Induced IVM (high cAMP)</td>
<td>dbcAMP</td>
<td>Porcine</td>
<td>Improved</td>
<td>Funahashi et al. (1997), Somfai et al. (2003),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bagg et al. (2006), Kim et al. (2008), Akaki et al. (2009), Nascimento et al. (2010), Sugimura et al. (2015), Park and Yu (2013), Appeltant et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>iAC</td>
<td>Bovine</td>
<td>Improved</td>
<td>Luciano et al. (1999, 2004), Guixue et al. (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine</td>
<td>None</td>
<td>Aktas et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>Forskolin</td>
<td>Human</td>
<td>Improved</td>
<td>Shu et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Murine</td>
<td>Improved</td>
<td>Albuz et al. (2010), Zeng et al. (2013, 2014),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Richani et al. (2014b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine</td>
<td>Improved</td>
<td>Ali and Sirard (2005), Albuz et al. (2010), Li et al. (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine</td>
<td>None/Decreased</td>
<td>Ulloa et al. (2014), Guimaraes et al. (2015), Bernal-Ulloa et al. (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ovine</td>
<td>Improved</td>
<td>Rose et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ovine</td>
<td>None</td>
<td>Buell et al. (2015)</td>
</tr>
</tbody>
</table>
cAMP management during IVM improves outcomes

Conventional IVF

Ovarian Hyperstimulation → IVF/ET

Fetal Yield

22%

Standard IVM

IVM → IVF/ET

8%

Induced IVM (SPOM)

Pre-IVM → IVM → IVF/ET

26%

- preservation of GJC
- ↑ glycolysis, ↑ oxidative metabolism
- ↑ GSH → ↓ ROS
- activation of EGF-p cascade
- ordered cessation of RNA synthesis
- delayed GVBD
- ↓ meiotic asynchrony

↑ Embryo Development

↑ Fetal Viability

cAMP pre-IVM preserves the benefits of CC-oocyte GJC

Li HJ et al. (2016) Hum. Reprod. 31:810-821
cAMP pre-IVM leads to decreased intra-oocyte ATP.
cAMP pre-IVM leads to decreased intra-oocyte ATP

Richani D et al. (unpublished)
cAMP pre-IVM upregulates in *intra-oocyte* AMPK activity

Richani D *et al.* (unpublished)
Effect of cAMP pre-IVM on COC ATP and AMPK activity

Two-way ANOVA
Time: P=0.000
Treatment: P=0.022
Interaction: N.S.

- No pre-IVM
- With pre-IVM

ATP

2h of IVM
16h of IVM

Phosphorylated AMPK

Richani D et al. (unpublished)
Changes in energy metabolism associated with increased oocyte developmental competence

Oocyte

Increased energy demand
(↓ ATP ↑ ADP ↓ ATP:ADP)

↓

↑ AMPK

↓

Restore energy homeostasis

FSK/IBMX pre-IVM

Cumulus

Increased ATP

↔ AMPK

Increased oocyte competence

Richani D et al. (unpublished)
Challenges in translating scientific advances to the human IVM clinic

- Biological challenges (topic of presentation)

- Human oocytes are scarce and precious

- We have poor measures of oocyte quality

 → :: need to produce human embryos for research ..!!

- IVF status quo works – resistance from the ART sector
VUB Brussels: Oocyte donors and experimental design

- **Patient work-up:** OCP, 3x days hMG (days 5-7), no hCG-priming, OPU 42h after last hMG
- **Follicle size:** typically ~5 mm, <4 – 10 mm
Effect of pro-cumulin in human IVM (retrospective)

Control: $n = 275$ COC

$n = 19$ patients and volunteers

Treatment: $n = 246$ COC

$n = 21$ patients and volunteers

Pre-IVM:
FSK+IBMX

IVM:
FSH + pro-cumulin

ICSI

Control:

$n = 275$ COC

$COC = 19$ patients and volunteers

Treatment:

$n = 246$ COC

$COC = 21$ patients and volunteers

Fertilisation rate (%)

Control

Treatment

Day 3 GQ Embryo / MII (%)

Control

Treatment

Blastocysts / MII (%)

Control

Treatment

Grade 1 D3 / D3 embryos (%)

Control

Treatment

*P<0.05

P=0.10

Gilchrist RB *et al* (unpublished, in collaboration with VUB and Adelaide)
Human oocyte “capacitation” in vitro using CNP (VUB Brussels)

Sanchez F et al. (2017) Hum. Reprod. 32:2056-68
How to make a good quality oocyte for ART?

- FSH + hCG
- FSH
- cAMP or CNP
- GDF9/BMP15/cumulin
- EGF-peptides or FSH

Diagram showing the process of making a good quality oocyte for ART.
Acknowledgements

University of New South Wales (UNSW), Sydney, Australia
Dulama Richani
Michael Bertoldo
Angelique Riepsamen
Yiqing Zhao
Kirsty Walters
David Agapiou
David Robertson
Bill Ledger

Sun Yat-sen University, China
Haitao Zeng
Xiao-Yan Liang

Robinson Research Institute, University of Adelaide, Australia
Jeremy Thompson
Lesley Ritter
Satoshi Sugimura
Navy Li
Xiaoqian Wang
Firas Albuz
Maxime Sasseville

Laval University, Canada
Francois Richard

University of Milano, Italy
Alberto Luciano

Vrije Universiteit Brussel (VUB), Belgium

Funding
- COOK Medical
- NHMRC Australia: Fellowships, Project Grants, Development Grants, Program Grants