Bioprosthetics: 3D printing as ovary restoration strategy

Monica M. Laronda, Ph.D.
Warren & Eloise Batts Scholar
Director of Basic & Translational Research
Fertility & Hormone Preservation & Restoration Program
Assistant Professor, Department of Pediatrics

Ovarian Club XII – December 2018 Hong Kong
Why pursue fertility preservation?

- American Society of Clinical Oncology & American Society for Reproductive Medicine & American Academy of Pediatrics recommend a **discussion about fertility preservation** for male and female patients undergoing gonadotoxic treatments.

- Infertility is one of the **primary concerns** of cancer survivors:
 - 75% of young adults who are childless at the time of diagnosis report a **desire to parent** in the future.
 - Cancer survivors report **PTSD symptoms** related to infertility as long as 10 years post-treatment.
 - Parents want **fertility preservation options presented** regardless of infertility risk/prognosis*.

Gonadotoxicity from Disease or Treatments

- **Childhood Cancer Survivors** are significantly more likely to be **infertile** or have **difficulty getting pregnant** than their siblings.

- **Genetic Causes for gonadal dysfunction:**
 - Turner Syndrome
 - Fragile X Syndrome
 - Germ cell tumor
 - Galactosemia

7 out of 8 children with cancer will survive.

Cancer.gov (0-19 y.o., rev: 1/13/15); Woodruff (2013) Nat Rev Endo

Stanley Manne Children’s Research Institute
Ovarian tissue cryopreservation (OTC)

- Ann & Robert H. Lurie Children’s Hospital: IRB-approved research protocol since 2010

- Study aims:
 - To cryopreserve gonadal tissue for patient’s own future use
 - Obtain research tissue biopsy (optional) and processing media
 - For optimizing freeze/thaw techniques
 - For developing technology for immature follicle maturation
 - For establishing pediatric-specific tissue processing techniques
 - Long term patient follow-up for timing and type of tissue and hormone restoration
Protocol Inclusion Criteria

- Pre or post pubertal individual
- Will undergo imminent surgery, chemotherapy or radiation therapy that has implications on future fertility and reproductive hormone potential:
 - any health condition or malignancy that requires removal of all or part of one or both ovaries,
 - whole abdomen or pelvic irradiation ≥10Gy in post-pubertal girls or ≥15Gy in pre-pubertal girls
 - total body irradiation, and
 - alkylating-intensive chemotherapy
 - cyclophosphamide cumulative dose ≥7.5 g/m²
 - any treatment regimen containing procarbazine
 - busulfan cumulative dose >600 mg/m²
 - alkylating chemotherapy conditioning prior to stem cell transplantation
 - combination of any alkylating agent with total body irradiation or whole abdomen or pelvic radiation
 - cranial radiation ≥30 Gy
 - summed alkylating agent dose score ≥3 (Green et al., 2009)
 - cyclophosphamide equivalent dose (CED) ≥ 4,000 mg/m² (Green et al., 2014)
- Patient may have newly diagnosed or relapsed disease.
Fertility Preservation: Child

Release of EGGS at Puberty

- Primordial Follicle
- Primary Follicle
- Secondary Follicle
- Early Antral Follicle
- Preovulatory Follicle
- Resumption of Meiosis
- Ovulation
- Meiosis Arrest at Metaphase II
- Corpus Luteum

National Physicians Cooperative Patient: 4 y.o. scale bar = 100 \(\mu \text{m} \)
Oocytes are a Finite Resource

Sex Hormones

<table>
<thead>
<tr>
<th>System / Organ</th>
<th>Disease / Disorder Developed in POI or menopause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>Decreased bone mass, Osteoporosis</td>
</tr>
<tr>
<td>Muscle</td>
<td>Decreased mass, strength</td>
</tr>
<tr>
<td>Vascular</td>
<td>High blood pressure</td>
</tr>
<tr>
<td>Skin</td>
<td>Decreased laxity, wound healing</td>
</tr>
<tr>
<td>Brain</td>
<td>Decreased short and long-term memory</td>
</tr>
</tbody>
</table>

Ovarian tissue preservation

Unilateral Oophorectomy

- Remaining ovary compensates and maintains same level of hormones
- There is little difference in age at menopause
- Remaining ovary can release more eggs when stimulated for ART

Re-implanting post-pubertal ovarian tissue restores fertility & hormones.

- > 130 reported live births
- Hormone production up to 12 years, average 2 – 5 years
- Possibility of reintroducing cancer cells
- Need to improve transplant and *in vitro* maturation to restore function long-term in all patients

3. Laronda, M. M. *et al.* *Biomaterials* 50, 20–29 (2015); Scale bar = 50 µm

Acute lymphoblastic leukemia cells in ovarian cortical tissue
Engineering an Ovary

Isolate desired cells; Remove cancer

Primordial Follicle

Oocyte granulosa

Support structure

Stanley Manne Children’s Research Institute

National Physicians Cooperative Patient: 4 y.o. scale bar = 100 µm
Matrices to graft ovarian follicles

- Telfer & Gosden (1990) Repro.
 - collagen-encapsulated pre-antral follicles
 - kidney capsule
 - embryos after stimulation and IVF

 - plasma clot-encapsulated primordial follicles
 - ovarian bursa (6-12 wks)
 - pups, no genetic verification from transplant, few small follicles left

 - fibrin(-HBP)-VEGF encapsulated ovarian tissue pieces OR primordial follicles
 - ovarian bursa (14-21 days)
 - pups

 - ovarian ECM scaffold primordial follicles & granulosa cells
 - kidney capsule (21 days)
 - antral follicles, few follicles left

Stanley Manne Children’s Research Institute
Decellularized Ovary

Primary ovarian cells cultured on ovarian ECM develop secretory blebs and follicle-like pores.

doi:10.1016/j.biomaterials.2015.01.051
Puberty was initiated in ovariectomized mice with ovary grafts.

- Initiated Puberty
- Supported Oocyte Differentiation
- Increasing Serum Estradiol
Development of Scaffold

Scaffold Criteria:

• Create a 3D feel
• Mechanically rigid to handle during implantation
• Open pores for nutrient flow, growth and ovulation
• Bioactive, bio-safe material

Gelatin scaffold with a microporous architecture

Different 3D printed advancing angles result in different pore design.

Intersecting (30°) Intersecting (60°) Grid (90°)

Follicles prefer more contact points.

Scale bar = 50 µm

Northwestern Medicine
Feinberg School of Medicine

Stanley Manne Children’s Research Institute
Follicles interact with scaffolds pockets

Vinnculin / dapi

Stroma / cytoskeleton / DNA

100 μm

Stanley Manne Children’s Research Institute
Follicles release MII eggs in vitro.

Bioprosthetic Ovary Transplant

- Both ovaries removed from adult mouse
- Rest of reproductive tract remains in tact
- 3D printed scaffold with seeded with follicles

Bioprosthesis 8wks post-surgery

Scale bar = 200 and 50 µm

Bioprosthesis 3wks post-surgery

Bioprosthetic ovaries develop functional vasculature.

Scale bar = 50 µm
Bioprosthetic ovary recipients reared healthy pups.

Implanted into Non-GREEN Ovariectomized Mouse

Bioprosthesis in bursa

GREEN pup from Ovary Implant
(- pup from different litter)

Stanley Manne Children’s Research Institute

Northwestern Medicine
Feinberg School of Medicine
Bioprosthetic ovary recipients reared healthy pups.

Females with Bioprosthetic Ovary:
- Cycling (vaginal histology)
- 3 had pups from transplant
- Supported pups with milk until wean
- Pups produced Grand-pups

Transplant recipient (EGFP-) with EGFP+ pup

Stanley Manne Children’s Research Institute

Northwestern Medicine
Feinberg School of Medicine
Next Steps: Compartmentalization

Bovine ovary

Next Steps: Compartmentalization

1. Define the differences between cortex and medulla
2. Observe folliculogenesis under altered environments
3. Modify ink / scaffold design to achieve desired outcome

- Slice ovaries
- Decellularize
- Create matrisome map

Northwestern Proteomics
Next Steps: Compartmentalization

- Printing different support cells
- Printing different structural proteins
- Printing different rigidity properties

stroma / cytoskeleton
Acknowledgements

Fertility & Hormone Preservation & Restoration Team including
- Erin Rowell, MD
- Kristine Corkum, MD
- Courtney Harris, MD

Laronda Lab Members
- Kelly Even
- Nathaniel Henning
- Sofia Petukhova
- Kelly McKinnon, PhD

Thank you
- Pat Magoon and Tom Shanley, M.D. & Lurie Children's Vision 2025 Initiative
- Mary and Ralph Gesualdo
- Stanley Manne

Funding Sources
- Warren & Eloise Batts Endowment (MML)
- Burroughs Wellcome Fund Career at the Scientific Interface Award (MML)
- This work was supported by the Center for Reproductive Health After Disease (P50HD076188) from the National Institutes of Health National Center for Translational Research in Reproduction and Infertility (NCTRI).

Artificial Ovary: patent application #15/545,175

LarondaLab.org

Northwestern Medicine
Feinberg School of Medicine

Stanley Manne Children’s Research Institute
In vitro Maturation of Small Follicles

- **Isolated Follicle Culture**
 - Growth of secondary follicles to healthy MII eggs

- **Cortical Strip Culture**
 - Maintain health of primordial follicles
 - UK/US group obtained MII eggs from cortical strip follicles
